
P H Y S I C A L R E V I E W V O L U M E 1 2 9 , N U M B E R 6 15 M A R C H 1 9 6 3 

Magnetoresistance of Silver Bromide* 
H. H. TippiNsf AND FREDERICK C. BROWN 

Department of Physics, University of Illinois, Urbana, Illinois 
(Received 22 October 1962) 

The magnetoresistance effect was investigated in high-purity zone-refined AgBr in order to obtain in­
formation about the conduction band structure in this material. The measurements were performed at 2 °K 
and in magnetic fields up to 18 kG. The rate-of-drift method using a sensitive electrometer was employed 
to observe the transient photoconductivity both in the presence and absence of a magnetic field. Results 
of the experiments are consistent with the assumption of a spherically symmetric conduction band centered 
at k = 0 as well as with an electron relaxation time of the form: T = T0(e/KT)zl2, with T 0 = 1 . 1 X 1 0 ~ 1 2 sec. 
During the course of the magnetoresistance measurements, a deviation from Ohm's law at high electric 
fields was noted. Some data on this "hot electron" effect are presented and briefly discussed. 

I. INTRODUCTION 

SPECULATIONS on the nature of the band structure 
in the silver halides have been of considerable 

interest for several years. By interpreting early experi­
mental results on optical absorption and photoconduc­
tivity Seitz1 suggested bands whose essential structure 
consisted of a simple conduction band centered at 
&=0, together with a more complicated valence band 
having a maximum not at k=0. Recently, measure­
ments of photoconductivity and Hall mobility have 
been reported2"5 on both AgBr and AgCL These 
measurements have yielded considerable information 
on the nature of the electron-lattice interaction, 
particularly the scattering processes. However, magneto­
resistance measurements are capable of providing 
important new information about the band structure 
and are now possible due to the availability of high-
purity material.6 It is the purpose of this paper to report 
the results of magnetoresistance measurements per­
formed on photoelectrons at 2°K in zone-refined 
samples of silver bromide and to compare these results 
with theoretical equations developed for the case of an 
energy band of standard form, nondegenerate statistics, 
and very low carrier concentration. The theory ap­
propriate to this situation is developed in the following 
section, and the pertinent experimental details are 
described in Sec. III. The results presented in Sec. IV 
are found to be in substantial agreement with this 
simple theory and offer good evidence that the conduc­
tion band is, in fact, of nearly standard form. 
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II. THEORY 

The dark conductivity of the silver halides is less 
than 10~19 Or1 cm"1 at liquid-helium temperatures. For 
typical low illumination intensities a photoconducting 
sample may have a conductivity of approximately 
10~16 0_1 cm-1. The illumination is normally kept to a 
minimum to reduce the buildup of internal polarization 
fields which make interpretation of experimental 
results very difficult. In materials of such low conduc­
tivity the Hall and magnetoresistance effects may be 
quite different from the corresponding effects occurring 
in a typical semiconductor or metal. In order to illustrate 
this statement we consider for simplicity materials 
containing only one type of carrier and compare the 
case of the normally insulating photoconductor with a 
typical semiconductor such as silicon or germanium. 
Consider first the case of a semiconductor. When a 
current flows in the semiconductor in the absence of a 
magnetic field, the electric field and current density 
vectors are parallel. This simple relationship is altered 
when a magnetic field is present. For example, if a 
magnetic field is applied in a direction perpendicular 
to the initial current direction, a transient flow of 
current will occur in the direction perpendicular to both 
the initial current direction and the applied magnetic 
field. This transient dies out very quickly, and the 
current flow returns to its initial direction. The steady-
state condition is reached in less than 10~10 sec. During 
the period of transverse charge displacement a trans­
verse electric field (the Hall field) is developed. The 
steady-state condition is such that the Hall field exactly 
cancels the Lorentz force of H on the average carrier. 
One may therefore consider that the net result of 
applying the magnetic field is to rotate the electric field 
out of its initial direction parallel to the current. 
Measurement of the transverse voltage that results 
gives the Hall constant, and the voltage drop in the 
current direction gives the resistivity in the presence 
of a magnetic field, i.e., 

Pex»=Ej/J=E-J/J\ 

The change in pexp produced by H is the quantity of 
interest in the magnetoresistance effect. We call 
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(a) 

FIG. 1. Electric field and current density vectors during develop­
ment of the Hall field in a semiconductor, (a) H = 0 . (b) Instant 
after application of an H in % direction, (c) /=time required for 
EH to develop, (d) £>>time required for EH to develop. 

particular attention to the way the magnetoresistance 
measurement is performed, viz., a constant current J 
is passed through a sample and the electric field parallel 
to J is determined for both zero and finite H by measur­
ing the voltage drop along J. The vector diagrams of 
Fig. 1 illustrate the current and voltage relationships 
described above. Figure 1 (a) is for a sample carrying a 
current due to an applied electric field E in the absence 
of a magnetic field. Immediately after application of a 
magnetic field H the situation shown in Fig. 1(b) 
obtains. A transverse current flows due to the Lorentz 
force of H on the carriers. In Fig. 1(c) the transverse 
Hall field has partially developed, and the transverse 
current decreased accordingly. In Fig. 1 (d) the steady 
state has been reached, and the transverse current is 
now zero. 

Many of the preceding remarks require modification 
for the insulating photoconductor. The time required 
for the establishment of internal fields is proportional 
to the resistivity of the material or equivalently to the 
reciprocal of the carrier concentration n, and can be 
several hours for n sufficiently small. In fact, due to the 
difficulty of interpreting the results when internal 
polarization fields are present, it is customary to go to 
the extreme and maintain the carrier concentration at 
as low a value as possible by using minimum illumination 
intensities. In this case the conductivity is measured by 
first establishing an electric field in the sample while 
it is in the dark. Then, the drift of charge which results 
when the sample is illuminated with light for a short 
time, is observed using a sensitive electrometer. This 
method can be employed both with and without a 
magnetic field. If the time during which such a measure­

ment is performed is small compared to the time re­
quired to establish the transverse Hall field, then the 
applied electric field is the quantity that remains 
constant during the measurement; in particular, the 
transverse electric field remains at zero. Thus, for the 
insulating photoconductor, the net result of applying 
the magnetic field is to rotate the current density vector 
out of its initial direction parallel to the electric field. 
Here it is the component of J parallel to E that is 
measured and we can define 

CTexp=JV£=J-E/£2 . 

Particular attention should be paid to the difference in 
the definition of pexp and o-exP. In terms of the vector 
diagrams of Fig. 1 the situation in the insulating photo­
conductor remains as in Fig. 1(b) during the entire 
measurement time. 

Within the range of electric fields such that Ohm's 
law is valid, the relation between current density and 
electric field may be written in the form: 

/ » = L i <?ijEj> (i) 

The quantities cr̂ - in general form a second-rank tensor 
and, when a magnetic field is present, are functions of 
H. The theoretical analysis of magnetoresistance is 
somewhat different for the two cases considered above. 
For the semiconductor J and H are specified, and Eqs. 
(1) solved for Ej\ for the insulating photoconductor 
we specify E and H, and solve Eqs. (1) for JE. I t should 
be remarked that although the quantity actually 
measured in this experiment is a conductivity, it will 
be convenient to refer to changes produced in l/orexp by 
the applied magnetic field. This is done to conform with 
the more generally accepted practice of quoting values 
of the quantity Ap/p. 

In an isotropic material the general form of the 
current density J in the presence of both an electric 
field E and magnetic field H is 

J=<r ( f l )E+a( t f )EXH+7( f f ) (E-H)H. (2) 

Within the framework of the classical theory, this 
equation is valid to all orders in H and for electric fields 
such that Ohm's law is valid. If we assume that a 
relaxation time r can be defined, a solution of the 
Boltzmann transport equation yields expressions for the 
coefficients <r(H), OL(H), and 7(27) in terms of integrals 
of the distribution function over wave-vector space. In 
addition we make the following assumptions: 

(1) The conduction band consists of a single minimum 
centered at k=0. In a cubic crystal this means that to 
terms second order in k: 

e=h2k2/2tn* (3) 

where e is the energy, k is the wave vector, and m* is 
the scalar effective mass of the carrier. 
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(2) The relaxation time r is isotropic and can be 
written in the form: 

r = r o ( € / i r r ) * = r o ^ , (4) 

where K is Boltzmann's constant, T is the absolute 
temperature, and p is a constant characteristic of the 
particular scattering mechanism. Here we are assuming 
that a single scattering mechanism is operative. It 
should be noted that it is assumptions (1) and (2) that 
permit the theory appropriate to an isotropic material 
to be used as was tacitly assumed in writing down 
Eq. (2). 

(3) Nondegenerate statistics are applicable with the 
equilibrium distribution function given by 

fQ=/3e-«KT=0e~*, (5) 

where /3 is a parameter determined by the number of 
electrons per unit volume. 

In this case the angular part of the scattering integrals 
can be carried out and the coefficients reduced to 
integrals over energy. The results are given as follows7: 

4 nm*/ e \2 f* x^z/2e"xdx 

3 7T1/2 W 

a(H)-
innv 

3 TT1/2C 

'-hi 
i*) Jo 

:\m*/ 

o l+a>2roV* 

3 .oo x2lH-3/2e-x^x 

TO2 , 

Jo l+w 2 roV* 
3 .3p- f3 /2<r *^ 

(6) 

/ e \ 4 r«^p+3/ 

\*»*/ Jo I+u>' 

4 nm* 
7 ( # ) = — 

3 irl/2c2 

where n is the carrier concentration, e is the magnitude 
of electronic charge, and a)=eH/in*c is the cyclotron 
frequency (c=108 for "practical units"). Using the 
symbol "( )"8 to indicate an average of the form 

4 r° 

3\/T J Q 3%/T 

the three coefficients become 

tie2 / 

gx*/2erxdx, (7) 

tie* / T \ 

« ( H ) = -
tie2 o) 

m*HM+ 

7(#) = -
m? 

\ l+coV/ ' 
(8) 

'a*2/ 

zr2\i+ 
The following very useful relation follows immediately 
from the first and third equations above: 

l<T(H)+y(H)H2y<r(0)=h (9) 
7 Reference 5, Eqs. (20). 
8 F. J. Blatt, in Solid State Physics, edited by t, 

Turnbull (Academic Press Inc., New York, 1956), Vol. 4, p. 240. 
8 F. J. Blatt, in Solid State Physics, edited by F. Seitz and D. 

(a) 

FIG. 2. Angular de­
pendence of the mag-
netoresistance as given 
by Eq. (13). Each curve 
is for a different fixed H 
as H is rotated in a plane 
containing the electric 
field. 

(b) 

We now proceed to calculate the magnetoresistance 
for the transient case where the Hall field is zero. Take 
E= (£,0,0) and H = (H sin0,O,H cos0). Figure 2 shows 
the orientation of these vectors. We have from Eq. (2): 

JE(H) = Jz(H) = Z<r(H)+y(H)H2 sin20]£, (10) 
JE(0) = <r(0)E. 

The term in square brackets in Eq. (10) is the theo­
retical quantity to be identified with the <reXp discussed 
previously. Using the definition : 

Ap JE(0) 
M ( H ) = — = — — - 1 

P JE{H) 

for the magnetoresistance, we obtain 

*(0) 
Af(H)=-

<r(H)+y(H)H* sin20 
•1. (ID 

Two special cases of the relative field orientation are of 
particular interest. 

(a) 0=0, transverse case: 

<r(0) / / T \ 
MT= l = <T>/< > - ! • 

(b) 0=90°, longitudinal case: 

<r(0) 

(12) 

M , = -
<x(H)+y(H)H* 

• 1 . 
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TABLE I. Coefficients for weak- and strong-field magnetoresistance in a semiconductor with very low carrier concentration. 

p 

-i 
0 

i 
1 2 

Afro/(a>r0)2 

1 
1 
3 

120 

MTm/(p>TQ)% 

0.5 
1 
2 
6 

MTO/(VHB/C)* 

1.275 
1 
1.087 
1.577 

MTJ(JXHH/C)* 

0.637 
1 
0.724 
0.0788 

Mn/buH/c)* 

1 
1 
1 
1 

MrJfauH/c)* 

0.5 
1 
0.667 
0.05 

From Eq. (9) it follows that ML=0. We, therefore, have 
the important result that for a spherical conduction 
band the longitudinal magnetoresistance is zero, a 
result which is also obtained for the steady-state case. 

Equation (9) may also be used to eliminate y(H)H2 

from Eq. (11), giving for the angular variation of M 

M(e)--
cos20 

1+MT sin20 
~MT- (13) 

It should be noted that M (0) varies as cos20 only for 
small MT* Equation (13) is plotted as a function of 0 
for three different values of MT in Fig. 2. 

If we denote the transverse magnetoresistance in the 
limit of small H as MTO and in the limit of large H as 
MTOO, we have from Eq. (12): 

Jf r o««V>/<r>, (14) 

Mroo=co2<r)/(l/r). (15) 

Recalling the definition of w, we, therefore, have the 
result that MT is proportional to H2 both at weak and at 
strong magnetic fields. This is in contrast to the result 
for the steady-state case which, although predicting 
an H2 dependence at weak fields, predicts saturation 
(i.e., no H dependence) at strong fields. From Eqs. (4) 
and (7) we have 

<r«>« (4roVV*)r(ff#+*). (16) 

Using Eq. (16), we obtain 

Jfro» ^ r 0 ) 2 r (3^+f ) / r (^+f ) , (17) 

MT«>= (coro)2r(^+f)/r(-^+f). (is) 
It will also be convenient to express these limiting 
values of M in terms of the Hall mobility defined by 

e <r2> e mp+l) 
j ^ — — — T Q 

m*(r) m* T(p+$) 
(19) 

since this is a quantity directly measurable by other 
means. MTO and Mr„ then become 

Mj 
/Mgg\T(3;+f)r f r+f) 

\cl 

MT„=l ) 

[r(2H-f)]2 

inp+m3 

(20) 

(21) 
\ c I [ r (2 />+f) ]T(-^+§) 

Table I gives the values of the coefficients of (o>ro)2 and 

(JIHH/C)2 in Eqs. (17), (18), (20), and (21) for p= -1/2, 
0, 1/2, 3/2. These are the respective values of p for 
scattering by acoustic modes, optical modes (or neutral 
impurities), dipole impurities, and charged impurities. 
Table I also gives the coefficients for expressing MTO and 
MT«, in terms of (jiMH/c)2, where we define the magneto­
resistance mobility by 

VM=(e/m*)((T*)/{T)yi\ (22) 

This definition is suggested by the form of Eq. (14) 
which in terms of fiM becomes 

MT0= (MMH/C)K (23) 

This is simply a matter of defining the "mobility" in 
terms of a "relaxation time" which has particular 
physical significance for the problem at hand. We, then, 
obtain 

MT„= ( . (24) 
\ c J r(-*+i)r(3*+4) 

For intermediate values of H, we obtain from Eqs. 
(12) and (7) 

M, TX?l2e~xdx / \ ) - l , 
o / JQ 1+COV / 

and from Eq. (4) this becomes 

00 x^me-xdxTl r r«> x^
6/ 

LA i+<* T MT=T(p+%)\ J I - 1 . (25) 

With the exception of ^>=0, the integrals in Eq. (25) 
cannot be expressed in closed form. They have, how­
ever, been evaluated numerically and the results are 
tabulated by Dingle et al? In terms of the integrals 
tabulated in this reference, MT becomes 

1 
* = - * : 

p=0: 

P=+i'-

P=h 

MT= 1, 
2a2(co2ro2) 

MT = 032TQ2
7 

0)2TQ2 

If — i 
1VI 'jp— l y 

a2(l/a)2r0
2) 

1 
Mm— 1 

&Z(032TQ2) 

(26) 

(27) 

(28) 

(29) 

9 R. B. Dingle, D. Arndt, and S. K. Roy, Appl. Phys. Sci. Res. 
B6, 144, 245 (1956). 
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FIG. 3. Transverse magnetoresistance of an insulating photo-
conductor for the important scattering indices. The abscissa is 
proportional to H through w — eH/m*c. 

Theoretical curves of MT versus wro, as calculated from 
the above formulas using reference 9, are shown in Fig. 
3 for MT between 0.01 and 100. In each case the curves 
approach the predicted weak- and strong-field asymp­
totes as given in Eqs. (17) and (18). I t should be noted 
that the validity of the above solutions for large H is 
subject to speculation, since the classical approach is 
valid only for10 

OOT= (eH/m*c)r<Kl. 

IE. EXPERIMENTAL DETAILS 

The study of electronic conduction processes in the 
silver halides is subject to a number of difficulties not 
encountered for typical narrow band gap semiconductors 
and metals.3 The method of measurement which lends 
itself to the simplest interpretation is that of transient 
primary photoconductivity. This method was first 
employed by Lehfeldt11 in measurements on insulating 
photoconductors in the early 1930's. A brief description 
of this method will now be given. For a more detailed 
description the reader is referred to the literature.2 In 
discussing the experimental details, results, and con­
clusions we will continue to neglect the contribution 
of holes as was done previously in Sec. I I . Although the 
experimental data on mobility and range of the hole 
at low temperatures in silver bromide are incomplete, 
this assumption appears to be a good one.5 

Several alternative arrangements are possible for 
measuring the primary photoconductivity. The "rate-of-
charge" method was selected because it offered certain 
experimental advantages. In order to understand this 
method, consider a crystal of thickness / placed between 

10 A. H. Wilson, The Theory of Metals (Cambridge University 
Press, New York, 1954), p. 210. 

11 W. Lehfeldt, Nachr. Ges. Wiss. Gottingen 1, 171 (1935). 

plane parallel "blocking" electrodes, one of which is 
connected to a battery and the other to a sensitive 
electrometer. The electrodes are blocked with thin 
insulating nonphotoconducting layers to prevent charge 
from entering or leaving the crystal. We assume that 
the crystal is at a sufficiently low temperature that 
ionic conductivity may be neglected. The dark conduc­
tivity of the crystal will then be very small ( < 10-19 ft""1 

cm - 1). If a potential difference is applied between the 
electrodes, an electric field is produced in the bulk of 
the crystal. The crystal will support such a field 
indefinitely if it is kept in the dark, and no charge 
displacement will be observed on the electrometer. If 
the crystal is now illuminated with light of appropriate 
wavelength, free electrons are released uniformly 
throughout the bulk of the crystal and the motion of 
these charges under the influence of the applied electric 
field is registered on the electrometer. A charge q, 
moving a distance x in the direction of the electric field, 
induces a charge qx/l on the electrode and makes a 
similar contribution to the total charge collected. 

A free electron that is released by the light is 
eventually trapped by an imperfection within the 
crystal or is collected at the surface. After continued 
illumination, this trapped charge gives rise to an 
internal polarization field which can appreciably reduce 
the effect of the externally applied field and make 
accurate interpretation of future measurements im­
possible. I t is, therefore, necessary to keep the intensity 
of illumination as low as is consistent with sensitivity 
requirements. Here we are dealing with a kind of a 
quasi steady-state situation whereby the trapping of the 
electrons is the process competing with the continuous 
excitation of free electrons by the incident light. 
Although the system is in a transient state, for times 
small compared to the time required to fill an appreciable 
fraction of the traps or the time required for the buildup 
of appreciable polarization field, the system may be 
treated as though it were in the steady state with 
constant values for carrier concentration and electric 
field. In this case we have 

Q=AnQenEy 

where Q is the rate at which charge is collected in 
C/sec, A the sample cross section in cm2, n0 the effective 
concentration of free electrons per cm3, e the electronic 
charge in C, ju the mobility in cm2/V sec, and E the 
electric field in V/cm. 

On the basis of the preceding considerations, we are, 
therefore, assuming that a normally insulating photo-
conductor can be treated as a semiconductor with a free-
charge density no in thermal equilibrium with the 
lattice, where n0 is determined by the incident light 
intensity and the trap density.12 In this case the quantity 
Q that is measured experimentally is proportional to the 

12 C. Kittel, Introduction to Solid State Physics (John Wiley and 
Sons, Inc., New York, 1956), 2nd ed., p. 516. 
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FIG. 4. Schematic diagram of apparatus. The entire sample 
chamber is immersed directly in pumped liquid helium. 

theoretical quantity J discussed in Sec. I I . The experi­
mental magnetoresistance is then 

A p / P = [ Q ( 0 ) / Q ( H ) ] - 1 . 

Q may conveniently be determined by connecting the 
electrometer output to a chart recorder and measuring 
the slope of the charge versus time response so obtained. 

In order to obtain the high mobilities required to 
observe the magnetoresistance effect ( M # = 104 cm2/V 
sec), it is necessary to work at liquid helium-tempera­
tures to reduce the strong scattering due to the longi­
tudinal optical modes. In addition, it is necessary to use 
samples of the highest available purity (zone-refined) 
to reduce the scattering due to charged impurities. 

A schematic diagram of the apparatus used in this 
experiment is shown in Fig. 4. The electrometer 
employed was an Applied Physics Corporation Model 
31 Vibrating Reed Electrometer. The electrometer was 
connected to a Varian Associates Model G-10 Chart 
Recorder. The light source consisted of the mono-
chromator from a Beckman Model DU Quartz Spectro­
photometer with a tungsten light source. Magnetic 
fields up to 18 kG were supplied by a Varian Model 
V-4012A Electromagnet System. The magnet was 
mounted on a calibrated turntable and could be rotated 
through the full 360° about a vertical axis. The magnetic 
field was measured with a rotating coil magnetometer. 
The Teflon sample holder was suspended from the top 
of the Dewar header by a length of thin wall cupro-nickel 

tubing and was surrounded by a brass can to shield 
the sample from external charges. The sample holder 
contained two silverplated copper electrodes, one fixed, 
and the other held against the sample by a light 
phosphor-bronze spring. Sheets of Mylar plastic 0.5 
mil thick were placed between the electrodes and sample 
to act as blocking layers. The entire sample chamber 
was immersed directly in liquid helium which was 
maintained below the X point by pumping. I t was 
necessary to go below the X point to reduce noise 
produced by the bubbling of the liquid helium. Since 
the Hall mobility is apparently independent of tem­
perature below about 10°K,5 one expects similar results 
at 2°K and at 4.2°K. The samples were cooled slowly 
from room temperature to liquid nitrogen temperature 
(about 20 h) to prevent strains which result from rapid 
cooling. 

The wavelength of the illumination employed was 
460 nux. This wavelength is less than 1 mju to the short-
wavelength side of the steep rise in fundamental optical 
absorption in AgBr.13 This choice of wavelength 
ensures a small absorption constant and, therefore, a 
uniform production of free electrons throughout the 
bulk of the material. The monochromator slit width was 
set at 0.01 mm for all measurements. 
The following procedure was used in taking the 
measurements: 

(1) With the electric and magnetic fields zero and 
the camera shutter that admits the light closed, the 
electrometer input is shorted. 

(2) The electric field is switched on. 
(3) The electrometer head is opened. 
(4) The camera shutter is opened. 
(5) After the electrometer has been integrating 

charge for about 25 sec, the magnetic field is switched 
on. For a typical field the small transient which occurs 
when the magnet is turned on lasts about 2 sec. 

(6) The electrometer is allowed to integrate charge 
for another period of approximately 25 sec, then the 
shutter is closed. 

(7) The electrometer head is shorted and the mag­
netic field is switched off. 

For a typical measurement the shutter is open for 
approximately 60 sec and the total charge collected is 
about 10~13 C. I t is possible to make approximately 60 
such measurements before polarization effects are 
observed. 

Preparation of Samples 

Both samples used in the experiment were cut from 
ingot K-566-29-25 obtained from the Kodak Research 
Laboratories. This ingot is a section from the central 
portion of a larger AgBr ingot which was multiple 
zone-refined in a bromine atmosphere. A total of 81 
zones were passed at a rate of f in. per h. A spectro-

13 F. C. Brown, T. Masumi, and H. H. Tippins, J. Phys. Chem, 
Solids 22, 101 (1961). 
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chemical analysis of the ingot showed no detectable 
impurities except for possible traces of Fe (approxi­
mately 0.02 part/million). The ingot was cut with a 
tungsten carbide circular saw using xylene for a 
lubricant. 

Sample KZR-2 is a rectangular parallelepiped ob­
tained from the ingot by sectioning a slice approxi­
mately 2 mm thick. A microtome was used to remove 
about 0.15 mm of material from the two largest faces and 
one edge. (The sample was subsequently mounted in 
the holder so that the light entered the microtomed 
edge as indicated in Fig. 4.) After cutting and cleaning, 
the sample was etched in successively diluted HBr. The 
sample was then annealed on a carefully cleaned quartz 
plate in a continuously flowing helium atmosphere. The 
helium supply passed through a liquid-nitrogen trap 
before entering the furnace. The temperature cycle 
for the furnace was programmed to warm to 400 °C 
in 20 h and then cool back to room temperature in 24 h. 
After annealing, the sample was polished on a flannel 
cloth wet with a 3% solution of KCN. All of the sample 
preparation operations described above were performed 
in subdued red light. The final dimensions of KZR-2 
were 1.55 mmX5.2 mmXS.9 mm. Although this sample 
is not a single crystal, it has only one or two grain 
boundaries. The orientation of the single crystalline 
sections was not determined. 

The sample designated KZR-110 is an oriented 
single-crystal disk 5.6 mm in diameter and 1.45 mm 
thick with the cylinder axis in the £110]] crystal-
lographic direction. The orientation was accomplished 
using x-ray back-reflection techniques. The cylindrical 
shape was produced by turning down the rough cut 
sample in a lathe with a tungsten carbide tipped tool. 
Approximately 0.15 mm was removed from each of the 
flat faces with the microtome. This sample was processed 
in exactly the same way as KZR-2 after the cutting 
operations.14 

It was possible to estimate the unit range of electrons 
at 78°K for the Kodak ingot from a partial saturation 
curve obtained at this temperature on sample KZR-2. 
From these measurements the unit range was found to 
be approximately 

w0=2X10~4cm2/V. 

IV. EXPERIMENTAL RESULTS AND CONCLUSIONS 

The magnetic field dependence of the transverse 
magnetoresistance for sample KZR-2 is shown in Fig. 5. 
The theoretical curve superimposed on the data points 
is the one obtained for charged-impurity scattering 
Qfr=3/2) and M * « 5.86X10* cm2/V sec. In drawing a 

14 For measurements on KZR-110 the sample holder was 
constructed so that the electrode faces were perpendicular to the 
sample holder axis. The lower electrode was then the spring loaded 
one while the upper electrode consisted of a thin piece of quartz 
with a conducting NESA coating on the face adjacent to the 
sample. This permitted illumination of the sample through the 
electrode from the top as before. 
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FIG. 5. Transverse magnetoresistance of zone-refined AgBr as a 
function of H. The solid line is a theoretical curve for £ = 3/2 
computed from Eq. (29). 

theoretical curve to fit the data we have only one 
parameter to be varied to make the fit (apart from the 
scattering index p). We may consider this single 
parameter to be TO, (T), JU# , or nM since these quantities 
are all proportional to one another. Note that if the 
theoretical Ap/p is plotted versus H on a log-log scale, 
the family of curves generated by varying the single 
parameter all have exactly the same shape; they are 
just displaced to the right or left relative to one another. 
If we set m*=0.3m, we find that r0= 1.1X 10~12 sec for 
the theoretical curve drawn on the data. The agreement 
between the theoretical curve and experimental points 
at low and intermediate fields is very good. The 
departure of the data from the theoretical curve for 
fields above about 5 kG is probably due to quantum 
effects and/or the relatively poor accuracy of the data 
for large Ap/p. For Ap/p^-1 the data are accurate to 
about 5% while for Ap/p^ 10 the error may be as high 
as 15%. However, the departure may not be entirely due 
to experimental error since the trend away from the 
theoretical curve is fairly reproducible and was found 
in several different sets of data. It is not surprising that 
departures from the classical theory are observed at the 
highest fields for we have fxHH/c^ 10 in this region. 
Attempts to fit the data of Fig. 5 with theoretical curves 
for the other scattering mechanisms (̂ >=0 and ±1/2) 
were unsuccessful. This is good evidence that charged 
impurity scattering dominates at this temperature, in 
agreement with earlier observations.5 

The data shown in Fig. 6 were also obtained for 
KZR-2. Here the magnitude of the magnetic field is 
held constant while the angle between E and H is 
varied through the full 360°. A magnet angle 6M of 60° 
or 240° corresponds to E parallel to H, i.e., the longi-
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tudinal effect, while a 6M of 150° or 330° gives E 
perpendicular to H, i.e., the transverse effect. Figure 6 
also shows the theoretical curve of this angular depend­
ence calculated for the same \iH used in calculating the 
theoretical curve of Fig. 5. Except for the difference in 
height of the two transverse peaks the agreement of the 
data with the theoretical curve is quite good. A point 
of particular interest is the vanishing of the longitudinal 
effect which is characteristic of a simple band structure. 
At 0^=240° the longitudinal effect is only 0.015 and, 
even though a small effect is shown for BM=60°, the 
ratio of the transverse to longitudinal effect exceeds 
50:1. This may be compared to the results obtained 
for w-type germanium where the transverse effect is 
smaller than the longitudinal effect by approximately 

~T~ —r- ~~T~ 
E«30 volta/em 
H-5.95 hllooowss 
T»2-K 
AflSr Crytfol KZR-2 

Theoretical curve 
for »T 0 -0.4 or 
H -&86xl04cm2/V.«*c i 

200 
MAGNET ANGLE 

FIG. 6. Angular dependence of the magnetoresistance for fixed 
H in zone-refined AgBr. E lies in the plane of rotation of H. The 
solid line is the theoretical curve obtained from Eq. (13). Note 
that the same m was used in calculating the theoretical curves of 
Figs. 5 and 6. 

3: l.15 The most reasonable explanation for the lack of 
symmetry of the transverse peaks is inhomogeneity of 
the sample. If the distribution of trapping centers 
throughout the sample is nonuniform, then the range of 
the electrons would vary with position in the sample. 
Suppose that a concentration gradient existed in the 
plane perpendicular to E. We would, therefore, expect 
y(H) to differ from Q(—H) since, on the average, the 
carriers are swept in opposite directions, away from the 
drift direction, for H and — H. At any rate the observed 
discrepancy is not serious and can be ignored entirely 
as far as conclusions about the band structure from 
these data are concerned. 

Figure 7 shows a set of data taken on the oriented 
disk-shaped sample KZR-110. For these data the 
magnetic field is held constant in magnitude but ro­
tated through the full 360° in the plane perpendicular to 
the electric field, which is in the [110] crystallographic 
direction. The dashed circle in Fig. 7 shows the average 
value of the experimental points. For a spherical 
conduction band and isotropic relaxation time, we 
should observe no variation in the magnetoresistance 

15 G. L. Pearson and H. Suhl, Phys. Rev. 83, 768 (1951). 
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FIG. 7. Angular dependence of the transverse magnetoresistance 
for fixed H in zone-refined AgBr. H remains perpendicular to E 
while being rotated through the full 360°. 

as the field is rotated. If the largest and smallest Ap/p 
in the data of Fig. 7 are thrown out, the maximum 
departure from the mean is less than 10%. This 
departure is approximately the same as the estimated 
error and probably includes some contribution from 
sample inhomogeneity as discussed previously. In 
addition, the anisotropic relaxation time resulting from 
Coulomb scattering by charged impurities could also 
produce some anisotropy in such a plot of Ap/p. Several 
different sets of data were taken with these same experi­
mental conditions. In each case an anisotropy similar 
to that present in Fig. 7 was observed. 

Several attempts were made to observe the transverse 
magnetoresistance at 78 °K. Even at a field of 18 kG 
the effect is just barely discernible and is of order 0.03. 
From the known Hall mobility5 at this temperature, we 
expect an effect of order 0.01. The sensitivity of the 
rate-of-charge method to very small changes in <r is not 
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FIG. 8. Photoresponse and transverse magnetoresistance as a 
function of electric field in zone-refined AgBr. 
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sufficient to permit accurate magnetoresistance measure­
ment in this temperature range. 

During the course of the magnetoresistance measure­
ments a nonlinear dependence of Q (0) on E was observed 
at the highest fields. Figure 8 shows the dependence of 
the photoresponse Q(0) and transverse magneto­
resistance on electric field. Within the framework of the 
theory presented in Sec. II, Q(0) should be linear in E, 
and Ap/p should be independent of E. We believe that 
the behavior illustrated in Fig. 8 arises from a break­
down of Ohm's law rather than saturation effects 
associated with the electron range. Although this sample 
has a relatively high unit range, the Q(0) versus E 
response showed only slight departures from linearity for 
£=30 V/mm at 78 °K. At this temperature there is less 
trapping than at 2°K, and the longer unit range which 
results causes the Q(0) versus E curve to saturate at an 
even lower E than for 2°K.2 

When an electron gains an amount of energy from 
the electric field between scattering events comparable 
to its thermal energy, a theory linear in E can no longer 
be expected to be valid. Under such conditions the 
conduction electrons are said to be "hot." Since these 
effects were beyond the scope of this experiment, their 
study was not pursued further. However, it may be 
stated that the general behavior of Q(0) for "large" 
fields is in accord with existing theories16 (although this 
may be fortuitous). Also, the observed variation of 
Ap/p with £ is what one would qualitatively expect 
from the Q(0) versus E curve. We may interpret the 
hot electron effect in terms of a decrease of mobility 
with increasing electric field from the constant mobility 
normally observed when Ohm's law is valid. Thus, since 
Ap/p^p,2, one would also expect the magnetoresistance 
to decrease as E increases. A more complete study of 
0(0) at high electric fields has subsequently been made 
by Masumi.17 These insulating photoconductors are 
particularly well-suited to the study of hot electron 
effects because of the ease with which high electric fields 
can be obtained. 

It should be noted that the magnetoresistance data 
shown in Figs. 5 and 6 were obtained for an electric 
field within the Ohm's law region. For the data of Fig. 
7, it was necessary to use an electric field which some­
what exceeded the Ohm's law region. However, the 
electric field effects alone would not introduce any 
false anisotropy into these data. 

16 W. Shockley, Bell System Tech. J. 30, 991 (1951). 
17 T. Masumi, Phys. Rev. 129, 2564 (1963). 

The electric field effects also created some experi­
mental difficulties. On the one hand, it was desirable 
to keep E within the Ohm's law region in studying the 
magnetoresistance effects so that the linear theory 
could be employed in interpreting the results. On the 
other hand, for high measurement sensitivity, it is 
desirable to use an E as large as possible so that illumi­
nation can be kept to a minimum. It was, therefore, 
necessary to compromise in selecting an electric field. 
Although the use of lower electric fields and higher 
illumination intensities (for a given sensitivity) does 
not appreciably speed up the onset of polarization, it 
was found that the rate of buildup of dark conductivity 
was approximately proportional to the light intensity. 
It is believed that the filling of very shallow traps is 
responsible for the observed buildup of dark conduc­
tivity. Thus, after continued illumination, the crystal 
becomes what amounts to an w-type semiconductor, 
having a number of electrons in shallow traps which are 
thermally excited to the conduction band. When such a 
condition is reached, performance and interpretation of 
the rate-of-charge measurements becomes very difficult. 
These considerations severely limited the data which 
could be taken on any particular run. 

The data presented in Figs. 5 through 7 are in 
substantial agreement with the theory given in Sec. II, 
based on the model of a spherical conduction band 
centered at k—0, and are considered good evidence that 
such a model is correct for AgBr. Recent optical 
absorption measurements13 have also been interpreted 
satisfactorily, using this conduction band model 
together with a more complicated valence band 
structure similar to the model originally proposed by 
Seitz. Still more recently, cyclotron resonance has been 
obtained in AgBr at 70 kMc/sec and shows no ap­
preciable change as the magnetic field is rotated with 
respect to the crystal axes.18 
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